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Abstract. The structure of the ultraviolet divergence is investigated for the field theoretical 
models with non-linear realisation of an arbitrary semi-simple Lie group, with spon- 
taneously broken symmetry of vacuum An invariant formulation of the background-field 
method of renormalisation is proposed which gives the manifestly invariant counter-terms 
off mass shell. A simple algorithm for construction of counter-terms is developed. I t  is 
based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The 
results of one-loop and two-loop calculations are reported. 

1. Introduction 

There is a close connection between the initial symmetry of the classical field theory 
and the dynamics of its quantisation. The  principle of symmetry itself often plays the 
role of a starting point for choosing a classical Lagrangian, and quantisation as well as 
renormalisation schemes are constructed which d o  not break the symmetry. 
Moreover, there is an opinion that taking into account the dynamical symmetry in 
theories with non-linear realisations, which are formally non-renormalisable, can 
provide renormalisability (Faddeev and Slavnov 197 1) or, at least, various relations 
between counter-terms reflecting the dynamical effects. For instance, in two-dimen- 
sional models (Bardeen et a1 1976) there arises the dynamical restoration of spon- 
taneously broken symmetry of vacuum (quark confinement is considered to be 
connected with the analogous phenomenon in quantum chromodynaniics (Bardeen 
and Pearson 1976)). 

The  present paper is devoted to the investigation of the structure of ultraviolet 
divergences in the field-theoretical models, which are the non-linear realisations of an 
arbitrary semi-simple Lie group with spontaneously broken symmetry of vacuum. k 
simple method is proposed for calculating the multi-loop counter-terms. With its help 
general formulae for one-loop and two-loop counter-terms are obtained. 

Note that for such theories the calculation of two-loop counter-terms in the 
framework of standard perturbation theory cannot be performed because of the 
technical difficulties arising from the non-polynomial structure of the Lagrangian. The  
background-field method (De Witt 1967. Honerkamp 1972a, 't Hooft 1973a, 
Arefieva et a1 1974, Tamura 1975, Grisaru et a1 1975) which simplifies essentially the 
calculations of one-loop counter-terms, is not invariant off mass shell in the case of 
non-linear realisations. This fact makes the background-field method non-applicable 
for calcuiations of higher counter-terms. 
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A proposed modification of the background-field method is based on the theory of 
non-linear realisations of semi-simple Lie groups (Cartan 1927, 1946, Coleman et a1 
1968, Volkov 1973). This theory is operating with the images of quotient space G / H ,  
where G is the  initial group of dynamical symmetry and H is the subgroup of vacuum 
stability. By the phenomenological Lagrangian method (Cartan 1927, 1946, Coleman 
et a1 1968, Volkov 1973), the algorithm for construction of the Lagrangians consists 
of the identification of the quotient space parameters with the fields of Goldstone 
particles and in the determination of the invariants of the group G defined on its 
quotient space. 

The main point is to take into account the geometry of curved space of fields when 
separating the variables into background and quantum ones. We use the operation of 
addition of vectors on quotient space* and give an algorithm for counter-term con- 
struction on the basis of group invariants in terms of Cartan forms. Counter-terms 
obtained in this manner are invariant off mass shell (Kazakov et a1 1977). 

The paper is organised as follows. In 9: 2 the main conceptions of the 
phenomenological Lagrangian method are given and the Cartan forms are introduced. 
Section 3 is devoted to the method of renormalisation. A proposed modification of 
the background-field method is described and its invariance is proved. In $ 4  the 
one-loop counter-terms are obtained and a general algorithm for counter-term con- 
struction is proposed. We use the algorithm developed in $ 5 to obtain a general 
formula for two-loop coun’ter-terms. In § 6 some conclusions and possible appli- 
cations of the proposed formalism are presented. 

2. Classical theory 

The construction of non-linear realisations and, on the basis of these, of the invariants 
defining the structure of the phenomenological Lagrangian for an arbitrary group of 
dynamical symmetry, can be carried out by a standard procedure (Volkov 1973). 

Let G be a (k + r)-parameter semi-simple symmetry group which degenerates the 
vacuum and produces the Goldstone particles; let H be its maximal subgroup leaving 
the vacuum invariant. The classical Lagrangian invariant under the group G has the 
form 

where Cz is a quadratic Casimir operator of the group G, o , ( A )  are the differential 
Cartan forms, which can be defined via the finite transformations of the group G by 
the equation 

G-’(A)d,G(A)= i[w,(A)+ e , (A)] ,  

o , (A)=w,(A)X, ,  e , (A)= e”,A>Ya, ( 2 )  

where Y,(a = 1 , 2 , .  . . , r) are the generators of the subgroup H, Xi(i = 1 , 2 , .  . . , k)  
are the generators of the coset G / H  which complements H to the whole group G, 

t Such an operation of addition was proposed for SU(2)x SU(2) theory by Honerkamp (1972b) and Ecker 
and Honerkamp (1973) and was developed in detail on the basis of Cartan theory for arbitrary dynamical 
groups (and among them quantum gravity) in papers of one of the authors (Pervushin 1975, 1976). 
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with the following algebra: 

[Y,, Y P I = ~ A & Y ~ ,  [x i ,  Y,] = iBkXk, [X,, X k ]  = icyk Y,. 

The group parameters (A)  are identified with the fields of Goldstone particles, and the 
forms w, and 8, have a simple geometrical meaning. The form w, is determined with 
respect to some basis, components of an infinitesimal displacement dA from a point A 
to a point A + d A  and the forms 6, define a change of the basis and are used to 
determine the covariant differentiation 

D,w, = D,w, = d,w, +i[6,, U , ] .  (4 1 
The Cartan forms @,(A) and e,(A) are connected by the structure equations of the 
quotient space 

awe, -due ,  + i[e,, e,] = - i[w,, o,] C,,, 

a,w, - dye, + i[e,, w,] = - i[w,, e,] CFV. 

The explicit expression of the Cartan forms can be determined in the chosen 
parametrisation from equation ( 2 )  as a solution of the fundamental Cartan equations 
(see appendix 1). 

The Lagrangian (1) is the invariant of the group G with minimal number of 
derivatives, and an arbitrary invariant can be expressed in terms of the Cartan forms 
in the following manner (Volkov er a1 1973): 

Sp(DL’. . .w [DL ’ .  . .w, [. . . , [DLn- lw, DLn. . . U]. . .I]), (6) 

where L, are the powers of the covariant differentials, points stand for the Lorentz 
indices over which summation is made. The invariants (6) form a complete set. 

3. A method of renormalisation 

We shall construct the renormalisation procedure on the basis of the invaraint formu- 
lation of the background field method. An excellent description of the background- 
field method of renormalisation can be found in the original paper by ’t Hooft 
(1973a). Therefore we recapitulate only the main points of the method and describe 
the proposed modification for the case of non-linear realisations. 

Let us consider the field theory with the Lagrangian Y(A).  The change of 
variables 

A - + A + 4  (7 1 
is to be carried out, where the field A is called the background (or classical or external) 
one and the field q5 is called the quantum (or internal) one.  Then  the generating 
functional for the loop diagrams is 

Counter-terms in the Lagrangian are obtained by expanding 2 ( A  + 4 )  into the Taylor 
series in 4. To construct the counter-terms of a given order we need only the finite 
number of the expansion terms. (To remove the divergences in the subgraphs the 
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same expansion should be made in the counter-terms of lower order which, for this 
purpose, should be known off mass shell.) 

If the Lagrangian possesses some kind of linear symmetry i t  is easy to show that 
the generating functional (8) is also invariant. The counter-terms obtained automa- 
tically satisfy all the Ward identities. 

However, in the case of non-linear realisations, the replacement (7) breaks the 
initial symmetry group. The  generating functional (8) no  longer leads to the invariant 
counter-terms off mass shell. Therefore we propose another method for separation of 
the background fields. The idea is the following (see Pervushin 1975). 

Let the Lagrangian be invariant under the group G of the field transformations 

G ( A ’ ) =  G ( g ) G ( A ) ,  (9) 

L?(G(A‘)) = -Y(G(A)). (10) 

where G(g) is the transformation of the group G and 

The  transformations (9) define the non-linear realisation of the group on the coor- 
dinates of space of the particles A .  Then the naturai way for separating the classical 
fields without violating the symmetry is to use the geometric properties of the group 
space of fields, i.e. to understand the sum of vectors (7) as the addition of vectors in 
the curved space (addition of vectors in the quotient space G / H ) ,  i.e. 

G ( A ) +  G ( A ) G ( 4 ) ,  A +A(+)& (11) 

For such an ‘addition’ of fields the ‘sum’ is an element of the same space and has the 
same transformation properties under the group G :  

G ( A  OG (4’) = G (g)G ( A  )G (d 1. (12) 

From equations (9), (12) it follows that both the Lagrangian and all its Taylor series 
are invariant under the group G. We  show this for the first variation of the Lagrangian 
representing it in the form 

S-m(+)4)l - 62’(A) - S3(GAG,)S(G 
84 + = o  SA S(GAG+) 

Then we have: 

Here we used the formulae (9), (10) and the fact that SG+/&#/+=,,=constant and is 
not transformed. Hence, taking into account the invariance of the integration 
measure S p  (4), we obtain 

F[A‘]  = F [ A ] .  

Thus the use of addition law (11) enables us to construct an explicitly invariant 
background formalism in the case of non-linear realisations. We  d o  not here use the 
equations of motion for the classical fields, which are important for the construction of 
finite Green functions off mass shell. 
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The  transformation ( i  1) nas a simple geometrical interpretation. It is a shift of the 
origin to the point A ,  which corresponds to the transformation of quantum fields with 
the parameters being the classical ones. Cartan forms in the new coordinates could be 
found substituting (1 1 )  into (2): 

[G(A)G(d)I-’a,[G(.4)G(4)1= i[G,(A, 4 ) +  8 , (A  d)I, (13) 

where the explicit form of &;(A, 4) and H,(A, 4)  in the chosen parametrisation is 
defined as a solution of the Cartan fundamental equations with the non-zero boundary 
conditions (3,(A. 0 )=  w,(A), G,(A, 0) = O,(A) (see appendix 1). They are 

where (D,4)>’ = d,c$‘ + i(O&(A)d)’ is the covaraint derivative of the field 4. 
Then for the theory with the Lagrangian (1) we have 

To find the counter-terms AYn in the n-loop approximation we have first to expand 
the Lagrangian over the quantum field up to 4’” and then to carry out the expansion 
of LY,, 1, up to 42n-2,  changing U+. 8, by &,, 8,. The  n-loop expansion of AUre,-’ 
reproduces the subtraction in the subgraphs. 

4. The algorithm for construction of counter-terms 

The proposed formalism enables us to develop a simple algorithm for construction of 
counter-terms in any approximation. From formula (14) it follows that all coefficient 
functions in the expansion of the Lagrangian (15) are products of forms w,(A) and 
e,(A). Furthermore. only three types of external structures, namely, 
w,(A)w,(A), U,(A)w,(A) and D,(A)D,(A) exist in all orders. This enables us to 
obtain manifestly invariant counter-terms, which are written in terms of the Cartan 
forms without expansion over fields. They are constructed from the set of linearly 
independent invariants of the symmetry group (6). From the analysis of the divergent 
diagrams i t  follows that in the n -loop approximation counter-terms are uniform 
functions of the Cartan forms of the power [ D w j Z k  [ w ] ’ ( ” + ~ - * ~ )  , k =0,  1 , .  . . , { in} . :  

Let us consider first the one-loop approximation. By formulae (8), (14) and (15) 
the generating Lagrangian for one-loop diagrams has the form 

3% (A, 4 1 = +[(D,dJ >’ P c 4  )i - dw,w,4 1. (16) 

Here the generators of the group Xi and Y, are chosen in the adjoint representation, 
and for simplicity we put them equal to the structure constants A ,  B and C in formula 
(3). We  obtain the types of vertices shown in figure 1. Hereafter the single internal 

i This fact results from the application of the continuous dimensional regularisation method. I n  another 
case the power pointed out should be maximal for the invariants at the n-loop approximation. 
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Figure 1. The types of one-loop vertices 

lines on  the diagrams denote the quantum fields 4 and the double external ones 
denote the forms of classical fields A .  

Linearly independent invariants of power four have the form 

I1 = s p  w,w,wwwy, I2 = s p  w,wJo,w,. (17) 

However, the invariant I2  cannot be directly reproduced by the one-loop diagrams 
with the vertices presented in figure 1 .  Therefore, we recompose the invariants Z1 and 
I2 using the structure equations ( 5 )  

Note that new invariants include the structures which are directly reproduced by 
one-loop diagrams and are included only in one  of them. We shall call these struc- 
tures the characteristic ones. 

They are 

Hence we shall look for the counter-terms in the form 

A 2 1  = biJl  f b2J2, ( 2 0 )  
where the coefficients bl and 62 are determined by the contribution to characteristic 
structures ( 1 9 )  from different divergent diagrams. For this purpose it is sufficient to 
examine two diagrams of figure 2 where E = (d  - 4)/2 is the parameter of dimensional 
regularisation, d + 4  is the space-time dimension. Substituting b ,  = [ 1 2 ( 1 6 ~ ~ ~ ) ] - ~  
and b2 = [ 4 ( 1 6 ~ ’ ~ ) ] - ’  into ( 2 0 )  and taking into account (18) we obtain: 

Now we can formulate a general algorithm for counter-term construction in the 
n -loop approximation. Counter-terms are constructed in the form 

U,, = a l I l + .  . . + a N N ,  ( 2 2 )  

Figure 2. The diagrams contributing to the one-loop counter-terms. 
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where 11, . . , , IN is the complete set of linearly independent invariants (6) and 
u l ,  . . . , uN are functions of the regularisation parameter. To determine a, it is 
necessary: 

(i) to write down the generating functional for the n-loop approximation taking 
into account equations (8), (14), (15) and to expand the lower counter-terms with the 
help of equation (14); 

(ii) to choose the complete sets of linearly independent invariants of the required 
power over Cartan forms, using equation (6) and the structure equations (5); 

(iii) to recompose the invariants in the form where they are directly reproduced by 
the combinations of the coefficient functions from the generating Lagrangian; 

(iv) to choose the characteristic structure in every new invariant and to calculate 
the contribution to it from the divergent diagrams of the n -loop approximation. 

Let us demonstrate the application of the proposed algorithm to the determination 
of the two-loop counter-terms. 

5. Two-loop approximation 

The generating Lagrangian in the two-loop approximation is 

W e  choose linearly independent invariants in the following manner: 

Let us recompose them taking into account the structure equations ( 5 ) .  Thus we 
obtain the new system of invariants. 
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We choose the characteristic structures in the invariants 

(26) 

The  diagrams shown in figure 3 contribute to t ' l - c  I cue structures. 
To evaluate the singular terms of the integrais corresponding to the diagrams 

presented in figure 3 ,  and to perform the subtraction in the subgraphs, we used the 
renormalisation scheme proposed by 't Hooft (1973b). The  transformations of the 
expressions obtained were performed by the formulae presented in appendix 2. As a 
final result, we have the following expression for the counter-terms of the two-loop 
approximation : 

1 5 
b1= ---( 48 I +SS2 . fi) +$?('I - 4 5 8 .  - 

bz = 2j( 1 1 + 1 05 6 . - - __- 211 + 3 O O 8 .  __ 
1 5 E 

N + 2 )  96.6 /  

16 N + 2 

' i  5 E 
b - 1 -  j7()  .- 71+358*-- ,  

b 5 - 4 x  --(,1-1818 

N + 2  4 -  48 ( 
71 - -458 3 - 

1 3 E 

hT + 2 

6 .  --), 5 
IL' + 2 
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J1 

a e  

J3=(33&,&3 ee e 

+ variations 

'5 

J6 ' 
J7 

J8 

Figure 3. The diagrams contributing to the two-loop counter-terms 

where Cz is the Casimir operator, N is the number of the group parameters (see 
appendix 2). 

We point out once more that invariants (24) do not include the products of traces. 
This reflects the so-called property of algebraic duality (Volkov et a1 1973). To our 
mind such products, even if they appear, should not contribute to the conter-terms. 
Otherwise, they should be included in the initial set of the invariants (6) and (24). 
This gives no principal change of the developed scheme, but only brings some 
technical difficulties. 
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6. Conclusion 

In the present paper we have proposed an invariant approach to the problem of the 
ultraviolet divergences, The approach allows the most consistent consideration of the 
symmetry properties when the counter-terms are constructed for the field theories 
with non-linear realisation of an arbitrary semi-simple Lie group, with spontaneously 
broken symmetry of vacuum. We mention the advantages of the formalism 
developed. 

(i) The counter-terms are manifestly invariant without taking into account the 
equations of motion. This enables us to investigate the structure of the divergences of 
the S-matrix and Green functions off mass shell. 

(ii) The counter-terms are constructed out of a small number of foreknown 
invariants of the group. 

(iii) The coefficient-determination procedure enables us to calculate the minimal 
possible number of diagrams. 

(iv) All the calculations are performed directly in covariant terms of Cartan forms 
without expansion over the fields. 

In  considering the non-linear realisations, the question of their non-renor- 
malisability naturally arises. The increase of power of invariants in the Cartan forms 
with the number of loops, apparently, indicates that the symmetry arguments alone do 
not lead to the closed form of the Lagrzngian and to its renormalisability in the 
ordinary sense. 

However, the situation is of interest when the coefficients for higher invariants are 
not arbitrary, but are determined by the coefficients for lower ones. Physically, it 
means the dynamical restoration of a symmetry group, which is wider than the initial 
one. The carrier of this symmetry would play the role of the bound state of initial 
fields. A phenomenon of this type takes place in two-dimensional models (Bardeen et 
a1 1976). The attempts to expand it to the four-dimensional ones are known to be 
connected with the mechanism of quark confinement (Bardeen and Pearson 1976). It 
was shown (Tamura 1975) in the case of non-linear realisation of the chiral SU(2)x 
SU(2) group that the one-loop counter-terms cannot be interpreted as a dynamical 
appearance of an isoscalar a-field. However, in the consideration of a more compli- 
cated variant of the a-model, including, for instance, isotensor a-fields the one-loop 
approximation can be interpreted in this manner. The question of its validity in the 
two-loop and higher approximations is now under consideration, 

In conclusion we mention that the formalism proposed can be applied to the 
theories with an algebra different from (3), for instance to quantum gravity (Pervushin 
1976, Borisov and Ogievetsky 1974). A treatment of quantum gravity in terms of a 
variant of non-linear realisation of dynamical affine symmetry (cf. Borisov and Ogie- 
vetsky 1974) is in preparation by the authors. 
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Appendix 1. The fundaments; Cartan equations 

Here we find the Cartan forms in the exponential parametrisation for the finite group 
transformation (Pervushin 1975) 

G(A)= exp(iX,A"). 

This parametrisation corresponds to the normal coordinates in space of the Goldstone 
particles. We have 

exp( - iX"A ")a, exp(iX,A") = i[w L (A)Xi + 0; (A) Ya]. 

Let us introduce a parameter t by the substitution A +At.  We obtain 

exp(-iX,A"t)d, exp(iX,A"t)= i[w:(At)Xi + Oz(At)Ya]. 

Differentiating this equation with respect to f, we obtain the fundamental Cartan 
equations 

with zero boundary conditions 

In the general case the solutions of the Cartan fundamental equations can be written 
as the series 

and Bip,  C$ are the structure constants of the group. In the coordinate system (12) 
the forms G,(A, 4) ,  J,(A, 4 )  can be found in the same way, by merely changing the 
boundary conditions: 

To illustrate how the algorithm works, we give the expressions for the Cartan forms 
for the SU(2) x SU(2) chiral group. In normal coordinates, they are 

c o s m -  1 
i, j ,  k = 1,2,  3; Cz= 2,  N = 3 .  0; (A) = - iikA'a,Ak 

A' ' 
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Appendix 2. Some useful formulae 

For the generators of group G taken in the adjoint representation .(Xb)), = i f a b c ;  
a , b , c = l , 2  , . . . ,  N ; f a b c  being the structure constant of the group, the following 
formulae are valid: 

f a b c f a b d  = C2acd, 

xaxa = C,I, s p  X "  = 0, s p  xaxb = c2aab s p  xaxbxC = +iC2fabc, 

C2 is a quadratic Casimir operator, 

s p  xaxbxcxdxe 

+ Sp[X", X C ] X d X b  . "?(-) 5 + Sp[Xb,  X C ] X d X "  ' G(-) 5 
3 N + 2  3 N + 2  

5 
6 N + 2 '  

+ s p  X " X b  s p  X C X d  . c'(-) 
s p  x k X a X  bXcX  kX d X e  
U- 

3 

+Sp[Xd ,  X " ] X b [ X C ,  X e ]  T(G) c2 5 

+ Sp[X', X Q ] X b [ X C ,  X d ]  * 5( c2 =) 5 
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+ s p  [X" ,  X " ] X b [ X ' ,  [ X d ,  X ' ] ]  * $(=) 5 

+ Sp[X', X " ] X b [ X ' ,  [ X d ,  X ' ] ]  ' $(A) 
+ s p  X"XbX'Xd  s p  X'X' . ?( =). 5 

+SpX"XbX'  s p  xdxex'. G(-) 5 
6 N + 2 '  
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